α, β-Unsaturated Carboxylic Acid Derivatives. Part 18. ${ }^{1}$ Syntheses of Geometric Isomers of 3,6-Dibenzylidene- and 3-p-Anisylidene-6-benzyl-idene-2,5-piperazinediones

By Chung-gi Shin,* Masato Hayakawa, Haruo Kato, and Kazutoshi Mikami, Laboratory of Organic Chemistry. Kanagawa University, Kanagawaku, Yokohama 221, Japan
Juji Yoshimura, Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology, Midoriku, Yokohama 227, Japan

Abstract

Naturally occurring 3,6-dibenzylidene- and 3-p-anisylidene-6-benzylidene-2,5-piperazinediones and their geometric isomers were synthesized by the condensation of 1 -acetyl or 1,4 -diacetyl derivative of (E)- and (Z)-benzylidene- or p-anisylidene-2,5-piperazinediones with an appropriate aldehyde. The configuration of these compounds were assigned on the basis of the spectroscopic analyses, and those of natural products were determined to be $(32,6 Z)$.

3,6-Dibenzylidene- (1) and 3 - p-anisylidene- 6 -benzyl-idene-2,5-piperazinedione (2) (2,5-piperazinedione $=$ PDO) were isolated, together with the antibiotic albonoursin (3-benzylidene-6-isobutylidene-PDO), ${ }^{2-6}$ from the culture filtrate of Streptomyces noursei ${ }^{7}$ and S. thioluteus. ${ }^{8}$
Syntheses of these compounds ${ }^{8-10}$ and many analo-
isomers of (1) and three of four possible isomers of (2), and determined the configurations of (1) and (2) to be $(3 Z, 6 Z)$.

results and discussion

1-Acetyl and 1,4-diacetyl derivatives of (E) - and (Z)-benzylidene-PDO $\left[(E)-(3 \mathrm{a})\right.$ and $(Z)-(3 \mathrm{a}){ }^{13}$ which

($3 \mathrm{E}, 62$) - (1); $\mathrm{R}=\mathrm{Ph}$
$(3 Z, 62)-(1) ; \mathrm{R}=\mathrm{Ph}$
(3Z, 62)-(2); $R=\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OMe-p}$
(3E, 6Z)-(2); $\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p$

$(32,6 E)-(2) ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-\rho$
gues ${ }^{11}$ have been accomplished by several research groups, but the configurational assignments of the above natural products had not been accomplished until the four isomers of albonoursin were synthesized by us. ${ }^{12}$

In this paper, we synthesized two of three possible
were synthesized by cyclization of ethyl (E) - and (Z)-2(chloroacetylamino)cinnamates with ammonia] were obtained by refluxing (E) - or $(Z)-(3 a)$ with acetic anhydride for a short period. It is noteworthy that $(E)-(3 \mathrm{a})$ gave predominantly the 1,4 -diacetyl derivative

$(E)-(3 a, b)$

(2) $-(3 a, b)$

(2) - (4a, b)

(z) $-\{5 a, b\}$
$a_{j} R=P h, \quad b_{j} R=C_{6} H_{h} O M e-p$
$(E)-(5 \mathrm{a}),{ }^{14}$ whereas $(Z)-(3 \mathrm{a})$ gave the 1 -acetyl derivative $(Z)-(4 \mathrm{a})^{12}$ as the main product. Although the prolonged reaction of $(Z)-(3 \mathrm{a})$ for 3 h increased the yield of the $1,4-$ diacetyl derivative $(Z)-(5 \mathrm{a})$ to $c a .20 \%$, the ratio $(Z)-(4 \mathrm{a})$: $(Z)-(5 \mathrm{a})$ was still $2.7: 1$. This general phenomenon ${ }^{15}$ in the acetylation of mono-alkylidene-PDO is diagnostic in
similar way, $(E)-(5 \mathrm{a})$ was successfully condensed with p-anisaldehyde to give ($3 Z$)- p-anisylidene-($6 E$)-benzyl-idene-PDO $[(3 Z, 6 E)-(2)]$. However, compounds (1) and (2) in the ($3 E, 6 E$)-configuration could not be obtained, because only (Z)-substituents were introduced by condensation with an aromatic aldehyde. As in the

Table 1
Yields, physical constants, and ${ }^{1} \mathrm{H}$ n.m.r. spectral data for (1) and (2)

$\begin{aligned} & \text { Compound } \\ & (3 Z, 6 Z)-(1) \end{aligned}$	Yield (\%)	Procedure	$\begin{aligned} & \text { M.p. }\left({ }^{\circ} \mathrm{C}\right) \\ & \text { (decomp.) } \end{aligned}$	${ }^{1} \mathrm{H}$ N.m.r. spectra ${ }^{(1)}(\delta)$				
				NH	3-Vinyl	6-Vinyl	$\mathrm{C}_{6} \mathrm{H}_{4}$-X	OMe
	$73.4{ }^{\text {b }}$	A	283-284	10.28	6.82		7.36-7.66 (m)	
	$65.5{ }^{\text {c }}$	A	(295)					
(3E,6Z)-(1)	$69.0{ }^{\text {d }}$	B	$270-272$	10.08	6.54	6.76 (s)	7.18-7.66 (m)	
			${ }_{\text {(281) }}$	10.85	6.80			3.85
$(3 Z, 6 Z)-(2)$	$49.5{ }^{\text {e }}$	A	263-265	10.16			6.97-7.63 (m)	
	$60.0{ }^{\text {b }}$	A	(270)					
(3E,6Z)-(2)	$53.2{ }^{\text {f }}$	B	$\begin{gathered} 252-253 \\ (258) \end{gathered}$	$\begin{aligned} & 10.02 \\ & 10.75 \end{aligned}$	6.52	6.72 (s)	6.86-7.70 (m)	3.81
$(3 Z, 6 E)$-(2)	$61.5{ }^{\text {d }}$	B	253-254 ${ }^{\text {g }}$	$\begin{array}{r} 9.97 \\ 10.77 \end{array}$	6.74	6.56 (s)	6.97-7.63 (m)	3.85
a Measu - Colourles	in $\left[{ }^{2} \mathrm{H}_{6}\right]$ D wder from	${ }^{b}$ From ng acetic a	-(4a). e Fro others were	$(Z)-(5 a)$ yellow	From ders.	(5а).	$(Z)-(4 \mathrm{~b}) .$	(E)-(4b

distinguishing the geometry of the parent compound, even when only one isomer is available.

On the other hand, the photoisomerization of 1-acetyl-(3Z)-p-anisylidene-PDO $\quad[(Z)-(4 \mathrm{~b})]^{16}$ by the method of Porter and Sammes ${ }^{14}$ gave the corresponding (E)-isomer, $(E)-(4 \mathrm{~b})$, in low yield. Deacetylation of $(Z)-(4 \mathrm{~b})$ and $(E)-(4 \mathrm{~b})$ with hydrazine ${ }^{16}$ gave the deacetylated products $(Z)-(3 \mathrm{~b})$ and $(E)-(3 \mathrm{~b})$ in quantitative yields, respectively, and prolonged acetylation of (Z) (4b) gave the corresponding 1,4-diacetyl derivative (Z)(5b) in 31% yield.

For the preparation of (1) and (2), the above acetyl derivatives (3)-(5) were condensed with benzaldehyde or p-anisaldehyde in the presence of sodium acetate ${ }^{9}$ or triethylamine ${ }^{\mathbf{1 7}}$ at elevated temperatures (Procedure
condensation of isobutyraldehyde by procedure $B,{ }^{12}$ the formation of the (E)-substituent could not be detected.

The physical and spectral data for the isomers of (1) and (2) are listed in Tables 1 and 2. The previous observations that vinyl protons in the (E)-configuration resonate at higher field than those in the (Z)-configuration ${ }^{\mathbf{1 2}, 18}$ support the structures of the geometric isomers shown in Table 1. From the physical properties of the geometric isomers summarized in Tables 1 and 2, the configurations of naturally occurring (1) and (2) could be identified unambiguously as having ($3 Z, 6 Z$)geometry, since the decomposition points, and the i.r. and u.v. spectra reported for (1) and (2) were in excellent agreement with those of $(3 Z, 6 Z)-(1)$ and $(3 Z, 6 Z)-(2)$, respectively. This conclusion is supported by the fact

Table 2
I.r. and u.v. spectral data for (1) and (2) *

	$\nu_{\text {max. }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$			$\lambda_{\text {max. }}(95 \% \mathrm{EtOH}) / \mathrm{nm}(\log \mathrm{E})$	
	NH	NHCO	$\mathrm{C}=\mathrm{C}$		
$(3 Z, 6 Z)$-(1)	3200	1695	1635	233 (3.95)	338 (4.47)
(3E,6Z)-(1)	3170	1695	1630	232 (3.89)	337 (4.30)
$(3 Z, 6 Z)$-(2)	3200	1690	1635	236 (3.95)	352 (4.45)
$(3 E, 6 Z)$-(2)	3190	1690	1638	234 (3.93)	352 (4.40)
$(3 Z, 6 E)-(2)$	3170	1682	1625	235 (3.96)	352 (4.47)

* Compound (1); m.p. 298-300 ${ }^{\circ} \mathrm{C}$, $\lambda_{\max .} 234(\log \varepsilon 3.9)$ and $338 \mathrm{~nm}(\log \varepsilon 4.3)$ (ref. 7): (2); m.p. $270-273{ }^{\circ} \mathrm{C}, \lambda_{\max .} 350$, and 398 nm (ref. 8).
A) or in the presence of potassium t-butoxide at $0{ }^{\circ} \mathrm{C}$ (Procedure B). ${ }^{16}$ Condensation of $(Z)-(4 \mathrm{a})$ and (4b) with benzaldehyde by procedure A gave ($3 Z, 6 Z$)-dibenzyl-idene-PDO $[(3 Z, 6 Z)-(1)]$ and (3Z)-p-anisylidene-(6Z)-benzylidene-PDO [(3Z,6Z)-(2)], respectively. Similar condensation of $(E)-(3 \mathrm{a})$ and $(Z)-(5 \mathrm{a})$ gave the same $(3 Z, 6 Z)-(1)$, indicating the thermal isomerization of $(E)-(5 a)$ under these reaction conditions.

As expected, treatment of $(E)-(5 \mathrm{a})$ or $(E)-(4 \mathrm{~b})$ with benzaldehyde by procedure B gave $(3 E, 6 Z)$-dibenzyl-idene-PDO $[(3 E, 6 Z)-(1)]$ and $(3 E)$ - p-anisylidene-($6 Z$)-benzylidene-PDO $[(3 E, 6 Z)-(2)]$, respectively. In a
that the biosynthesis of 3 -alkylidene- or arylidene-PDO such as mycelianamide, ${ }^{19}$ cryptoechinuline $\mathrm{A},{ }^{20}$ and neoechinuline, ${ }^{21}$ by incorporation of l-tryptophan into a cyclic dipeptide and subsequent stereoselective dehydrogenation, gives predominantly the (Z)-isomer.

EXPERIMENTAL

M.p.s were taken with a Yamato micro-apparatus (MP-21) (capillary method). I.r. spectra were recorded with a Hitachi EPI-G3 spectrometer, u.v. spectra with a Shimadzu UV-100 spectrometer, and n.m.r. spectra with a JNM-PS100 spectrometer (tetramethylsilane as the internal standard, in deuteriochloroform unless otherwise stated).

Chemical shifts and coupling constants were recorded in δ and Hz units, and i.r. frequencies in cm^{-1}.

Acetylation of $(E)-(3 \mathrm{a})$. -The acetylation of $(E)-(3 \mathrm{a})^{13}$ $(170 \mathrm{mg}, 0.84 \mathrm{mmol})$ with acetic anhydride (5 ml) was carried out by the usual procedure by heating at $130^{\circ} \mathrm{C}$ for 0.5 h . After removal of excess of acetic anhydride under reduced pressure, the residual semi-solid, consisting of two components, was chromatographed on a silica gel column [benzene-acetone ($25: 1 \mathrm{v} / \mathrm{v}$)] to give (E)-(5a) (160 mg , 66.7%) and (E)-(4a) ($10 \mathrm{mg}, 4.8 \%$), both as colourless prisms after recrystallization from ethanol. (E)-(5a), m.p. $126-127{ }^{\circ} \mathrm{C}$ (lit., ${ }^{14}$ syrup); $\delta 2.60$ and $2.65(2 \times \mathrm{Ac})$, $4.59\left(\mathrm{CH}_{2}\right.$; s), 7.13 (vinyl-H; s), and $7.30-7.80(\mathrm{Ph} ; \mathrm{m})$ (Found: C, 63.05; H, 4.9; N, 10.1. $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.93 ; \mathrm{H}, 4.93 ; \mathrm{N}, 9.79 \%$). (E)-(4a), m.p. $157-158{ }^{\circ} \mathrm{C}$ (lit. ${ }^{14}$ m.p. $178-179{ }^{\circ} \mathrm{C}$) ; $\delta 2.57(\mathrm{Ac}), 4.42\left(\mathrm{CH}_{2} ; ~ \mathrm{~s}\right), 6.58$ (vinyl H; s), $7.12-7.48$ (Ph ; m), and $10.04(\mathrm{NH})$ (Found: C, 64.1; $\mathrm{H}, 5.05 ; \mathrm{N}, 11.45 . \quad \mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 63.92$; H, 4.95 ; N, 11.47%).

Acetylation of $(Z)-(3 \mathrm{a})$ and $(Z)-(4 \mathrm{~b})$.-Acetylation of $(Z)-(3 \mathrm{a}){ }^{13}$ and $(Z)-(4 \mathrm{~b})^{16}$ was performed in a similar manner as described above. From (Z)-(3a) ($330 \mathrm{mg}, 1.63 \mathrm{mmol}$) and acetic anhydride (10 ml), $(Z)-(4 \mathrm{a})$ and $(Z)-(5 \mathrm{a})$ were obtained in 90.0% (358 mg) and $6.7 \% ~(30 \mathrm{mg})$ yield, respectively. When the reaction was continued for 3 h , the above yields were 57.7% and 24.4%, respectively. (Z)-(4a), m.p. $201-202{ }^{\circ} \mathrm{C}$ (lit., ${ }^{16}$ m.p. $200-201{ }^{\circ} \mathrm{C}$). $(Z)-(5 \mathrm{a}):$ m.p. $151-152{ }^{\circ} \mathrm{C}$; $\delta 2.48$ and $2.60(2 \times \mathrm{Ac})$, $4.60\left(\mathrm{CH}_{2}\right.$; s), $7.34(\mathrm{Ph}$; s), and 7.50 (vinyl H; s) (Found: C, $62.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 9.65 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.93$; H, 4.93; N, 9.79%).

Acetylation of (Z)-(4b) ($680 \mathrm{mg}, 2.48 \mathrm{mmol}$) with acetic anhydride (20 ml) for 3 h gave (Z)-(5 b) ($250 \mathrm{mg}, 31.1 \%$) as colourless prisms from ethanol, along with starting material (46.3% recovered); (Z)-(5b): m.p. $159-160{ }^{\circ} \mathrm{C}$; $\delta 2.53$ and $2.59(2 \times \mathrm{Ac}), 4.48\left(\mathrm{CH}_{2}\right.$; s), $7.06(\mathrm{Ph} ; ~ \mathrm{~s}), 7.44$ (vinyl H ; s) (Found: C, 60.85; H, 5.0; N, 8.8. $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires $\mathrm{C}, 60.75 ; \mathrm{H}, 5.10 ; \mathrm{N}, 8.86 \%$).

Preparation of $(E)-(4 \mathrm{~b})$.-A solution of $(Z)-(4 \mathrm{~b}) \quad(200$ $\mathrm{mg}, 0.73 \mathrm{mmol}$) in methanol (100 ml) was irradiated with a high-pressure mercury lamp under a nitrogen atmosphere at room temperature for 3 h . The resulting solution was concentrated to give crystals, which were chromatographed on a silica gel column with chloroform-acetone ($10: 1 \mathrm{v} / \mathrm{v}$) as eluant to give $(E)-(4 \mathrm{~b})(30 \mathrm{mg}, 15.1 \%)$ as colourless prisms from methanol, along with starting material (65% recovered) $(E)-(4 \mathrm{~b})$, m.p. $173-174{ }^{\circ} \mathrm{C}$; $\delta 2.59$ (Ac), 4.43 $\left(\mathrm{CH}_{2}\right.$; s), 6.50 (vinyl H ; s), $7.12(\mathrm{Ph}$; s), and $9.60(\mathrm{NH})$ (Found: C, 61.2; H, 5.35; N, 10.2. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, 61.31 ; H, $5.15 ; \mathrm{N}, 10.21 \%$).

Deacetylation of $(E)-(4 \mathrm{~b})$ and $(Z)-(4 \mathrm{~b})$.-A solution of $(E)-(4 \mathrm{~b})$ or $(Z)-(4 \mathrm{~b})(274 \mathrm{mg}, 1 \mathrm{mmol})$ in hydrazine hydrate $(100 \mathrm{mg}, 2 \mathrm{mmol})$ and dimethylformamide (3 ml) was stirred
at room temperature for 2 h . The reaction mixture was poured into ice-water (10 ml) and the crystals that separated were collected, washed with water, and recrystallized from boiling acetic acid to give $(E)-(3 \mathrm{~b})$ or (Z)-(3 b), respectively, as a colourless powder in quantitative yield. (E)-(3b), m.p. $258-260{ }^{\circ} \mathrm{C}$ (decomp) ; $\delta 4.50\left(\mathrm{CH}_{2} ; ~ \mathrm{~s}\right.$), 6.90 (vinyl H; s), $7.28(\mathrm{Ph} ; \mathrm{s})$, and 8.18 and $9.86(2 \times \mathrm{NH})$, (Found: C, $62.0 ; \mathrm{H}, 5.3 ; \mathrm{N}, 12.1 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 62.06 ; \mathrm{H}$, 5.21 ; N, 12.06%). (Z)-(3b), m.p. $243-245{ }^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{16} \mathrm{~m} . \mathrm{p} .278-280{ }^{\circ} \mathrm{C}$).

Preparation of (1) and (2).-Preparation of (1) and (2) was performed by the condensation of (3)-(5) with the appropriate aldehyde by procedure $\mathrm{A}^{9,17}$ or B ; ${ }^{16}$ the results are presented in Table 1. Elemental analyses were in agreement with theoretical values.

We thank the Ministry of Education, Japanese Government, for financial support.
[8/1752 Received, 9th October, 1978]

REFERENCES

${ }^{1}$ Part 17: C. Shin, Y. Yonezawa, K. Unoki, and J. Yoshimura, Bull. Chem. Soc. Japan, 1972, 52, 1657.
${ }_{2}$ (a) R. Brown and C. Kelley, Ann. Report New York State Department Health Albany, 1957, 10; 1960, 50, 52; 1961, 40; (b) R. Brown, C. Kelley, and S. E. Wiberley, J. Org. Chem., 1965, 30, 277.
${ }_{3}$ K. U. Rao and W. P. Cullen, J. Amer. Chem. Soc., 1960, 82, 1127.
${ }_{4}$ G. S. Rosenfeeld, L. I. Rostovtseva, V. M. Baikiam, D. M. Trakhenberg, and A. S. Khokhlov, Antibiotiki, 1963, 8, 201.
${ }^{5}$ M. Vondracek and Z. Vanek, Chem. and Ind. (London), 1964, 1686.
${ }^{6}$ K. Fukushima, K. Yazawa, and T. Arai, J. Antibiotics, 1973, 26, 175.
${ }_{7}$ A. S. Khokhlov and G. B. Lokshin, Tetrahedron Letters, 1963, 1881.
${ }^{8}$ N. N. Gerber, J. Org. Chem., 1967, 32, 4055.
${ }^{9}$ T. Sasaki, Chem. Ber., 1921, 54, 163.
${ }^{10}$ (a) C. Shin, Y. Chigira, M. Masaki, and M. Ohta, Tetrahedron Letters, 1967, 4601; (b) C. Shin, Y. Chigira, M. Masaki, and M. Ohta, Bull. Chem. Soc. Japan, 1969, 42, 191.
${ }_{11}$ C. Shin, K. Sato, A. Ohtsuka, K. Mikami, and J. Yoshimura, Bull. Chem. Soc. Japan, 1973, 46, 3876.
${ }_{12}$ C. Shin, M. Hayakawa, K. Mikami, and J. Yoshimura, Tetrahedron Letters, 1977, 863.
${ }_{13}$ C. Shin, M. Hayakawa, T. Suzuki, A. Ohtsuka, and J. Yoshimura, Bull. Chem. Soc. Japan, 1978, 51, 550.
${ }^{14}$ A. E. A. Porter and P. G. Sammes, J. Chem. Soc. (C), 1970, 2530.
${ }^{15}$ Unpublished results.
${ }^{16}$ C. Gallina and A. Liberatori, Tetrahedron, 1974, 664.
${ }^{17}$ E. Ueda, Nippon Kagaku Kaishi, 1929, 50, 502.
${ }_{18}$ K. W. Blake and P. G. Sammes, J. Chem. Soc. (C), 1970, 980.
${ }_{19}$ G. W. Kirby and S. Narayanaswami, J.C.S. Chem. Comm., 1973, 322; J.C.S. Perkin I, 1976, 1564.
${ }_{20}$ R. Cardillo, C. Fuganti, D. Ghiringhelli, P. Grasselli, and G. Gatti, J.C.S. Chem. Comm., 1975, 778.
${ }^{21}$ R. Marchelli, A. Dossena, and G. Casnati, J.C.S. Chem. Comm., 1975. 779.

